EXERCICE PARTIE A

On considère la fonction f définie sur]-1,+
$$\infty$$
[par:
$$\begin{cases} f(x) = \frac{\ln(1+x)}{x} & \text{si } x \neq 0 \\ f(0) = 1 \end{cases}$$

Cf désigne la courbe représentative de f dans le plan muni d'un repère orthonormé (o,\vec{i},\vec{j})

- 1. Montrer que f est continue sur $]-1,+\infty[$
- 2 .a. Démontrer que pour tout réel x de l'intervalle $]0,+\infty[$ on a : $0 \le \frac{1}{x} \int_0^x \frac{t^2}{1+t} dt \le x \int_0^x \frac{1}{1+t} dt$
 - b. Démontrer que pour tout réel x de l'intervalle]-1,0[on a : $0 \le \frac{1}{x} \int_0^x \frac{t^2}{1+t} dt \le x \int_0^x \frac{1}{1+t} dt$
 - c. Vérifier que pour tout t de $]-1,+\infty[,\frac{1}{1+t}=1-t+\frac{t^2}{1+t}]$

En déduire que pour tout réel x de l'intervalle $]-1,+\infty[,x \ne 0 \text{ on a}:f(x)=1-\frac{1}{2}x+\frac{1}{x}\int_0^x\frac{t^2}{1+t}dt$

- d. En exploitant les résultats des questions précédentes, montrer que f est dérivable au point 0. Déterminer une équation de la tangente à Cf au point d'abscisse 0 et étudier la position de Cf par rapport à cette tangente.
- 3 . Soit g la fonction définie sur $]-1,+\infty[$ par : $g(x)=\ln(1+x)-\frac{x}{1+x}$
 - a. Etudier les variations de g
 - b. En déduire le signe de g(x) pour x>-1 et donner le sens de variation de f.
- 4. Construire la courbe Cf.

PARTIE B

1. Justifier que pour tout réels a et b de $]-1,+\infty[$ tels que a < b on a :

$$(b-a)f(b) \le \int_{a}^{b} f(t)dt \le (b-a)f(a)$$

En utilisant la méthode des rectangles pour n=5, en déduire un encadrement de l'aire de la partie du plan délimitée par l'axe des abscisses , la courbe Cf et les droites d'équations respectives x=0 et x=1

- 2. Soit h l'application définie $]-1,+\infty[$ par : $h(x)=x+1-(x+1)\ln(1+x)$
- a. Dresser le tableau de variation de h
- b. En déduire que pour tout x de]-1,0] $h(x) \in]0,1]$
- c. Montrer que pour tout $x \in \left[-1, -\frac{1}{2} \right]$: $0 \le f(x) \le -2\ln(x+1)$

En déduire que la fonction F : $x \mapsto \int_{x}^{-\frac{1}{2}} f(t)dt$ est majorée dans $\left[-1, -\frac{1}{2}\right]$

3. On considère la suite $(V_n)_{n \in \mathbb{N}^*}$ de terme général $V_n = \int_{-1+\frac{1}{n}}^0 f(t)dt$

Etudier le sens de variation de la suite (v_n). En déduire que cette suite est convergente