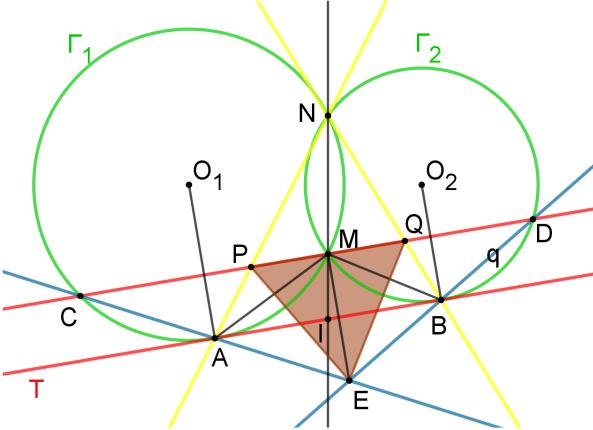
Correction du test olympiades de mathématiques 27 Mars 2022 Hammamet Chelly Moez

Exercice 1:

 $1/\Gamma_1$ et Γ_2 sont sécants en M et N donc la droite (MN) est l'axe radical de ces deux cercles. $I \in (MN)$ donc il a la même puissance par rapport aux deux cercles.

Comme $P_{\Gamma_1}(I) = IA^2$ et que $P_{\Gamma_2}(I) = IB^2$ alors IA = IB et $I \in [AB]$ donc I est le milieu de [AB].



2/Comme les droites (AB) et (CD) sont parallèles alors l'homothétie de centre N qui envoie A sur P va envoyer B sur Q

et puisque I est le milieu de [AB] et que l'homothétie conserve le milieu alors M va être le milieu de [PQ].

Appelons O_1 et O_2 les centres respectifs des cercles Γ_1 et Γ_2 .

T est tangente à Γ_1 en A et (CM) est parallèle à T donc $(AO_1) = med[CM]$ et par suite ACM est isocèle en A d'où AM = AC.

Vue le parallélisme des droites (AB) et (CD) et que ACM est isocèle en A on

 $a : \overrightarrow{BAM} = \overrightarrow{AMC} = \overrightarrow{MCA} = \overrightarrow{BAE}$.

De même on montre que $\stackrel{\wedge}{MBA} = \stackrel{\wedge}{EBA}$.

Les triangles AMB et AEB ont ainsi deux angles égaux et le côté [AB] en commun, ils sont donc isométriques et par suite AM = AE.

AM = AE = AC donc CME est un triangle rectangle en M.

Dans le triangle EPQ la médiane [EM] est perpendiculaire au côté [PQ] donc ce triangle est isocèle en E

Exercice 2:

Soit f une solution éventuelle de l'équation (E): $\frac{1}{x}f(-x)+f\left(\frac{1}{x}\right)=x$.

En posant $u = \frac{1}{x}$, on obtient: $uf\left(-\frac{1}{u}\right) + f\left(u\right) = \frac{1}{u}$ ou encore $f\left(-\frac{1}{u}\right) + \frac{1}{u}f\left(u\right) = \frac{1}{u^2}$ (1)

Et en posant u = -x, on obtient: $-\frac{1}{u}f(u) + f\left(-\frac{1}{u}\right) = -u$ (2)

Par addition de (1) et (2), on obtient : $2f\left(-\frac{1}{u}\right) = \frac{1}{u^2} - u$ soit $2f(-x) = x^2 - \frac{1}{x}$ ou encore

$$f(x) = \frac{x^2}{2} + \frac{1}{2x}$$
.

Réciproquement:

$$\frac{1}{x}f(-x)+f\left(\frac{1}{x}\right)=\frac{1}{x}\left(\frac{x^2}{2}-\frac{1}{2x}\right)+\left(\frac{1}{2x^2}+\frac{x}{2}\right)=\frac{x}{2}-\frac{1}{2x^2}+\frac{1}{2x^2}+\frac{x}{2}=x.$$

Conclusion: La seule solution de (E) définie sur IR^* est la fonction $f: x \mapsto \frac{x^2}{2} + \frac{1}{2x}$.

Exercice 3:

Voici le tableau de congruence modulo 8 du carré d'un entier.

n	0	1	2	3	4	5	6	7
n^2	0	1	4	1	0	1	4	1

Soient x et y deux entiers.

Les restes possibles modulo 8 de $x^2 + y^2$ sont donnés par le tableau suivant.

y^2	0	1	4
0	0	1	4
1	1	2	5
4	4	5	0

Et comme $2022 \equiv 6 \pmod{8}$ alors l'équation $x^2 + y^2$ n'admet aucune solution entière.

Remarque: On peut trouver d'autres solutions